Management of Rhizoctonia in Sugarbeet

Ashok K. Chanda

Assistant professor/ Extension Sugarbeet Pathologist Northwest Research and Outreach Center, Crookston Dept. of Plant Pathology, University of Minnesota

SMBSC Production Seminar, Jan 24, 2018

achanda@umn.edu

Summary of Field Samples 2017 vs 2016

2017 Monthly Rainfall - RRV and So. MN

Source: NDAWN Center, NDSU & SMBSC

Why is Rhizoctonia becoming a common problem?

Increase in number of acres for susceptible crops in sugarbeet rotation

Acreage for Field Crops in MN

Rhizoctonia

- Fungus Rhizoctonia solani
- Anastomosis group AG 2-2
- AG 2-2 has intraspecific groups (ISGs)
 - AG 2-2 IIIB and AG 2-2 IV
- Both ISGs cause same symptoms on sugarbeet
- Both occur in MN/ND (Windels, 2009)
 - RRV (460 cultures): AG 2-2 IV most common (66%)
 - So. MN (504 cultures): AG 2-2 IIIB most common (56%)

Aggressiveness of AG 2-2 IV and III B on sugarbeet and common rotation crops (seedlings)

Aggressiveness of AG 2-2 IV and 2-2 IIIB on sugarbeet and common rotation crops (adult plants)

Average disease ratings

Pinto bean (1-5)~3

Soybean (1-5)~3.5

Wheat (0-3)~0.2

Damping-off Crown and Root Rot

Factors affecting Rhizoctonia

- Density of fungus in soil
 - High populations: disease begins early in season even if weather is not ideal
 - Low populations: onset of disease is later in season, esp. if weather ideal
- Environment
 - Temperature: 50 to 95+ 0F (68 to 85 0F)
 - Soil moisture: dry to wet @ 25 100% MHC
- Susceptibility of variety

Sugarbeet variety susceptibility and Rhizoctonia levels in the soil

Rhizoctonia & Resistant Variety (~3.4)

Rhizoctonia & Moderately Resistant Variety (~4.0)

Rhizoctonia & Susceptible Variety (~5.3)

Variety selection for 2018

		Rhizoctonia Root Ratings			
	2017	2016	2015	2016-2017	2015-2017
Variety	Root	Root	Root	2 Year Mean	3 Year Mean
Description	Rating	Rating	Rating	Root Rating	Root Rating
Fully Approved Varieties					
Beta 92RR30 (Aph)	4.6	4.6	4.8	4.6	4.7
Beta 9475 (CLS)	4.2	4.5	4.6	4.4	4.4
Crystal M579 (High Sugar)	4.8	5.0	4.6	4.9	4.8
Crystal M375	5.5	4.7	4.8	5.1	5.0
Crystal M380	4.9	4.7	4.1	4.8	4.6
Took Mouleof Variation					
Test Market Varieties		0.0		0.0	
Beta 9606	3.0	3.6		3.3	
Beta 9661	3.6	4.2		3.9	
Beta 9666 (High Sugar)	4.9	5.1		5.0	
Crystal M623	3.2	3.4		3.3	
SV RR958	4.1	4.4	4.3	4.2	4.3
SV RR863 (CLS)	3.8	4.5		4.1	
Specialty Approved					
Crystal RR018 (RHC)	3.3	3.8	3.9	3.5	3.7
Hilleshog 9093RR (RHC)	3.3	3.3	3.3	3.3	3.3
Hilleshog 9739 (RHC)	3.9	3.8	3.5	3.8	3.7
Maribo MA109RR (RHC)	3.1	3.8	2.9	3.4	3.3
Beta 9505 (CLS)	3.5	4.5	4.1	4.0	4.0
Conventional Test Market					
Hilleshog 3035	3.1				

Rhizoctonia Ratings from SMBSC Nursery at Renville and BSDF Nursery in Michigan

Ratings are on scale of 1 - 7. (1 = Healthy, 7 = Dead)

Management of Rhizoctonia

- Crop Rotation
 - Length
 - Crop choice & weed control
- Early planting
- Resistant varieties
- At-planting fungicides
 - Seed treatments
 - In-furrow fungicides
- Postemergence fungicides

Seed treatments

- SDHI class of fungicides
- Single site of action (<u>Succinate</u>
 <u>DeHydrogenase Inhibitor</u>)
- Inhibit fungal respiration

Seed treatments

- Kabina 14 g (Penthiopyrad, 2014)
- Vibrance 1.5 g (Sedaxane, 2016)
- Systiva 5 g (Fluxapyroxad, 2017)
- Metlock Suite [Metconazole + Rizolex) + Kabina 7g (Penthiopyrad), 2014)
- In 2017, 100% seed is treated for Rhizoctonia and treatment depends on the seed companies' choice

Seed treatments – 2016

Seed treatments – 2017

Seed treatments – 2015

Benefits of seed treatments

- Ease of use -It comes with seed
- Safety
- No plugged nozzles
- Sugarbeet seedlings are very susceptible to Rhizoctonia early on
- Genetic resistance is not expressed until 6-8 leaf stage
- Effective protection of seedling (4-5 weeks)

In-furrow treatments – 2015

In-furrow treatments – 2016

In-furrow treatments – 2017

In-furrow treatments

Benefits

- Sanitizing the furrow (seedling + soil)
- More effective than seed treatments longevity up to 8-10 weeks (Windels, 2010)

Risks

- Phytotoxicity
 - cool weather and light soils
 - Mixing with starter fertilizer and other chemicals
- Plugged nozzles

Seed vs In-furrow treatments - 2015

No. harv.				Sucrose	
No. harv.					
Roots/100 ft.	RCRR (0-7)	Yield	%	lb ton ⁻¹	lb A ⁻¹
98	3.9	20.1	16.6	304	6181
127	2.7	25.5	16.5	303	7772
0.001	0.006	0.0032	NS	NS	0.0148
Kabina ST		12 fl oz Hea	dline IF		
ock Suite					
Met. Suite + 7 g Kabina		· ·			
7 g Kabina ST		•			
Vibrance		.011 02 00		not signific	cantly diffe
	Roots/100 ft. 98 127 0.001 Kabina ST ock Suite e + 7 g Kabina Kabina ST	Roots/100 ft. 98 3.9 127 2.7 0.001 0.006 Kabina ST ock Suite e + 7 g Kabina ST Kabina ST	Roots/100 ft. 98 3.9 20.1 127 2.7 25.5 0.001 0.006 0.0032 Kabina ST ock Suite 10 fl oz Qualata St Sabina ST 10 fl oz Sabina St Sabin	Roots/100 ft. RCRR (0-7) Yield % 98 3.9 20.1 16.6 127 2.7 25.5 16.5 0.001 0.006 0.0032 NS Kabina ST ock Suite et + 7 g Kabina Kabina ST 12 fl oz Headline IF 10 fl oz Quadris IF 10 fl oz Equation IF 10 fl oz Satori IF	Roots/100 ft.

Seed vs In-furrow treatments - 2017

Treatment	No. harv. roots/100 ft	RCRR (0-7)	RCRR % incidence	Yield ton A ⁻¹	% Sucrose	RST	RSA
Seed treatments	195	1.2	22	31.6	17.9	339	10708
In-furrow treatments	191	0.8	15	32.4	18.0	343	11132
P-value	0.43	0.07	0.07	0.36	0.57	0.37	0.22
	NS	NS	NS	NS	NS	NS	NS

Seed Treatments

14 g Kabina ST

Metlock Suite

Met. Suite + 7 g Kabina

5 g Systiva

1.5 g Vibrance

In-furrow

10 fl oz Quadris

11.9 fl oz AZteroid

Xanthion (Headline +

Integral, 9 + 1.8 fl oz/A

Treatment (Rates per Acre)	Percent stand loss	RCRR (0-7)	RCRR % Incidence
No fungicide control	66 a	3.7 a	75 a
AZteroid @ 17.6 fl oz, band	22 b	0.7 b	15 b
Quadris @ 10 fl oz, band	15 b	0.9 b	16 b
Quadris @ 14 fl oz, band	27 b	1.2 b	25 b
Quadris @ 14 fl oz broadcast	14 b	1.1 b	21 b
ANOVA <i>P</i> -value	0.0001	<0.0001	<0.0001
LSD $(P = 0.05)^{W}$	17.6	0.92	18.4

Treatment (Rates per Acre)	Yield T/A	% Sucrose	RST	RSA
No fungicide control	23.2 c	16.9 c	314 b	7324 c
AZteroid @ 17.6 fl oz	33.6 ab	17.6 ab	330 ab	11084 ab
Quadris @ 10 fl oz	33.5 ab	17.9 a	336 a	11272 a
Quadris @ 14 fl oz	31.9 ab	17.7 a	334 a	10659 ab
Quadris @ 14 fl oz	33.4 ab	17.4 abc	327 ab	10944 ab
broadcast				
ANOVA <i>P</i> -value	<0.0001	0.0297	0.0460	0.0001
LSD $(P = 0.05)^{W}$	3.86	0.68	15.4	1451

Treatment (Rates per Acre)	Percent stand loss	RCRR (0-7)	RCRR % Incidence
No fungicide control	66 a	3.7 a	75 a
Topguard EQ @ 7 fl oz	23 b	1.1 b	20 b
Priaxor @ 6.7 fl oz + NIS (0.25%)	25 b	1.5 b	26 b
Proline @ 5.7 fl oz + NIS (0.125%)	25 b	1.6 b	33 b
ANOVA <i>P</i> -value	0.0001	<0.0001	<0.0001
LSD $(P = 0.05)^{W}$	17.6	0.92	18.4

Treatment (Rates per Acre)	Yield T/A	% Sucrose	RST	RSA
No fungicide control	23.2 c	16.9 c	314 b	7324 c
Topguard EQ @ 7 fl oz	35.5 a	17.5 abc	330 ab	11715 a
Priaxor @ 6.7 fl oz + NIS (0.25%)	31.0 b	16.9 bc	316 b	9809 b
Proline @ 5.7 fl oz + NIS (0.125%)	32.7 ab	17.9 a	336 a	11013 ab
ANOVA P-value	<0.0001	0.0297	0.0460	0.0001
LSD $(P = 0.05)^{W}$	3.86	0.68	15.4	1451

	Percent	RCRR	Yield
Treatment	stand loss	(0-7)	T/A
Non-inoculated			
No-fungicide control	35	3.4	24.3
R. solani-inoculated			
Equation @ 14 fl oz/A	22 bc	1.9 d	31.0 a
Quadris @ 14 fl oz/A	25 bc	2.4 d	29.9 a
Satori @ 14 fl oz/A	20 c	2.4 d	29.6 a
No-fungicide control	55 a	5.5 a	14.0 c
ANOVA <i>P</i> -value	0.043	0.0001	0.004
LSD $(P = 0.05)^{Z}$	23.6	1.4	8.3

	Sucrose		
Treatment	%	lb/ton	lb recov./A
Non-inoculated			
No-fungicide control	14.8	257	6263
R. solani-inoculated			
Equation @ 14 fl oz/A	14.7	261	8066 a
Quadris @ 14 fl oz/A	15	265	7908 a
Satori @ 14 fl oz/A	14.9	266	7790 a
No-fungicide control	14	244	3411 c
ANOVA P-value	0.829	0.804	0.002
LSD $(P = 0.05)^{Z}$	NS	NS	2284

NS = not significantly different

Treatment	Percent stand loss	RCRR (0-7)	Yield T/A
Non-inoculated			
No-fungicide control	35	3.4	24.3
R. solani-inoculated			
Priaxor @ 6.7 fl oz/A + NIS	34 abc	4.0 bc	23.4 ab
Priaxor @ 6.7 fl oz/A	49 a	4.8 ab	21.0 bc
Proline @ 5.7 fl oz/A + NIS	44 ab	4.7 abc	20.4 bc
No-fungicide control	55 a	5.5 a	14.0 c
ANOVA <i>P</i> -value	0.043	0.0001	0.004
LSD $(P = 0.05)^{Z}$	23.6	1.4	8.3

	Sucrose		
Treatment	%	lb/ton	Ib recov./A
Non-inoculated			
No-fungicide control	14.8	257	6263
R. solani-inoculated			
Priaxor @ 6.7 fl oz/A + NIS	14.9	261	6177 ab
Priaxor @ 6.7 fl oz/A	14.1	246	5112 bc
Proline @ 5.7 fl oz/A + NIS	13.5	232	4677 bc
No-fungicide control	14	244	3411 c
ANOVA <i>P</i> -value	0.829	0.804	0.002
LSD $(P = 0.05)^{Z}$	NS	NS	2284

NS = not significantly different

Benefits

- If you are doing a row cultivation
- Later season disease control
- Beneficial if later part of the season stays wet
- Low disease now means clean fields in the future
- If using susceptible crops in rotation

Risks

- Timing
 - Work better before infection happens
- May not be useful if later part of the growing season stays dry
- Band application severe disease pressure
- Broadcast application low disease pressure

Take Home Message for 2018

Rhizoctonia pressure (beets/100 ft. row)	Resistant (Specialty) variety	Seed treatment	In-furrow treatment	Postemergence treatment
Low (170-200)	No	Yes	No	No
	No	Yes	No	Yes (if following Beans)
Moderate (130 - 170)	Yes Yes No	Yes Yes Yes	No No No	No Yes (if following Beans) Yes
Severe (less	Yes	Yes	Yes	Yes
than 130)	No	Invest	Your \$\$\$\$	Elsewhere!

Take Home Message for 2018

- Seed treatments Kabina, Vibrance, Systiva, or Metlock
 Suite + Kabina provide excellent early-season protection
- In-furrow applications
 - Similar to seed treatments under low disease pressure
 - Better than seed treatments under high disease pressure
 - May reduce stands under cool and dry soil conditions
- Seed/in-furrow treatments can broaden the window to apply postemergence application (4 to 8 leaf stage)
- Postemergence application is most beneficial under moderate to heavy disease pressure especially if beets are following soybeans or edible beans
- Generic formulations of azoxystrobin are effective

Acknowledgements

- Sugarbeet Research and Education Board of Minnesota and North Dakota
- Southern Minnesota Beet Sugar Cooperative
- Scott Pahl, Germains Seed Technology
- Seed, chemical, and allied industries
- American Crystal Sugar Company quality lab
- Jeff Nielsen and Hal Mickelson
- Summer Students: Tim Cymbaluk, Brandon Kasprick and Muira MacRae
- Minn-Dak Farmers Cooperative