SWEET CORN IN ROTATION WITH SUGARBEET AS A POTENTIAL HOST OF
RHIZOCTONIA SOLANI AG 2-2

Jason R. Brantner¹, Carol, E. Windels¹, Mark Bredehoeft², and Chris Dunsmore²

¹University of Minnesota, Northwest Research and Outreach Center, Crookston and
²Southern Minnesota Beet Sugar Cooperative, Renville

Rhizoctonia crown and root rot (RCRR) is an increasing problem throughout sugarbeet-growing areas of Minnesota and North Dakota. The disease is caused by the soilborne fungus, Rhizoctonia solani, which is separated into different genetic populations called anastomosis groups (AGs) (4). The AG causing RCRR on sugarbeet is AG 2-2, which is further divided into the intraspecific groups (ISGs) AG 2-2 IV and AG 2-2 IIIB (4,6). Both ISGs cause RCRR on sugarbeet, but AG 2-2 IV is reported as the primary cause (6) while AG 2-2 IIIB is reported as the more aggressive population (5).

In Europe, R. solani AG 2-2 IIIB is an aggressive root pathogen on both corn and sugarbeet in rotation (3). In the southeastern U.S.A., R. solani AG 2-2 IIIB causes a crown and brace root rot on corn (7,8). Recent reports have demonstrated that corn is a host for R. solani AG 2-2 IIIB, and soybean for both ISGs, without any effects on yield or presence of aboveground symptoms (1,10,11,12). In southern Minnesota, sugarbeet follows corn on 75% acres, sweet corn (10%), soybean (10%), and other crops (5%). Information is not available on the relationship of sweet corn to R. solani AG 2-2 ISGs.

OBJECTIVES

A field trial was established in southern Minnesota to determine 1.) pathogenicity and survival of R. solani AG 2-2 IV and AG 2-2 IIIB on sweet corn compared to field corn, soybean, and wheat and 2.) effects on a subsequent sugarbeet crop. This report summarizes results from the first year of a two-year experiment.

MATERIALS AND METHODS

A field trial was established in a split plot design with six replicates in the spring of 2010 near Gluek, Minnesota. Main plots (88 ft wide by 20 ft long) consisted of a non-inoculated control, inoculation with R. solani AG 2-2 IV, and inoculation with R. solani AG 2-2 IIIB. Inoculum of R. solani was grown for 3 weeks on sterilized barley, air-dried in the greenhouse, and hand-spread in plots (at an equivalent of 31 lb A⁻¹) and incorporated into soil on May 4. There were 11 ft by 20 ft buffers between each main plot. Main plots were divided into eight, 11 ft by 20 ft subplots which were sown on May 7, May 18 and June 30, to an early-, mid-, and late-maturing sweet corn variety, respectively. Field corn was planted on May 7, soybean on May 18, and wheat on May 19. Field corn and soybean were Roundup Ready varieties. Within main plots, there were 11 ft buffers between sweet corn and each field crop and between wheat and each RoundUp Ready crop. On June 27, weeds were controlled in sweet corn with Laudis and in field corn and soybean, with RoundUp Powermax (3 and 22 oz A⁻¹, respectively). Wheat plots were hand-weeded.

To obtain root disease ratings and plant samples to assay for R. solani AG 2-2, 10 plants of sweet corn and field corn and 20 plants of soybean and wheat were dug from each plot. Early- and mid-season sweet corn varieties and wheat were collected on August 4 and late-maturing sweet corn, field corn, and soybean were collected on August 24. Roots were washed and rated for root rot. Sweet corn and field corn were rated on a 1-5 scale where 1 = less than 2% of roots discolored or decayed, 5 = entire root system rotted and plant dead or dying (7). Soybean basal stems and roots were rated on a 1-5 scale where 1 = no symptoms and 5 = shoot dead and more than 75% of stem girdled (2). Wheat subcrown internodes were rated on a 0-3 scale where 0 = clean and healthy and 3 = more than 50% of the surface with lesions and discoloration (9).

After roots were assessed for disease, they were assayed to isolate R. solani AG 2-2. Four, 1-inch root segments were excised from each sweet corn and field corn plant, surface-treated 15 seconds in 0.5% sodium hypochlorite
(bleach solution), rinsed twice in sterile deionized water, and placed on modified tannic acid medium. After 1 week, *R. solani* cultures were transferred to acidified potato dextrose agar for further identification. One-inch soybean basal stem segments and wheat subcrown internodes were cultured in the same way.

Yields of sweet corn and field corn were made by hand-harvesting all ears within 10 feet of two center rows per plot on August 24, September 14, and September 27 for early-, mid-, and late-maturing sweet corn varieties, respectively, and on September 27 for field corn. Ears of field corn were shelled with a stationary corn sheller. Wheat was harvested with a small plot combine. Soybean yield data was compromised by severe iron chlorosis in several plots and is not reported.

Data was subjected to analysis of variance and if significant (*P* = 0.05), means were separated by Least Significant Difference (LSD).

RESULTS

Root rot ratings were not significantly different (*P* = 0.05) among *R. solani*-inoculated and control treatments for all crops (Table 1). Root rot ratings averaged 2.8, 3.3, and 2.6 for early-, mid-, and late-maturing sweet corn, respectively, and 1.7, 3.1, and 2.3 for wheat, field corn, and soybean, respectively.

Recovery of *R. solani* AG 2-2 from all crops was very low (data not shown). The fungus was not recovered from roots of early- and late-maturing sweet corn or from field corn. In mid-maturing sweet corn *R. solani* was isolated from 1.7% of roots in non-inoculated plots and none in *Rhizoctonia*-inoculated plots. The fungus was recovered from 0.8% of wheat roots in *R. solani* AG 2-2 IV-inoculated plots and was not isolated from roots in the non-inoculated or AG 2-2 IIIB-inoculated plots. In soybean, *R. solani* was found in 0.8% of plants in AG 2-2 IV- and AG 2-2 IIIB-inoculated plots and none in the non-inoculated control.

Inoculum treatment had no effect on yield for early-, mid-, and late-maturing varieties of sweet corn (Table 2). Late-maturing sweet corn had the lowest yields (mean = 7.5 ton A⁻¹) compared to 10.9 and 11.1 ton A⁻¹ for early- and mid-maturing varieties, respectively. Yields of wheat and field corn also were not affected by inoculum treatment (Table 2) and averaged 48 and 219 bu A⁻¹, respectively.

<table>
<thead>
<tr>
<th>Table 1. Root rot ratings of sweet corn, wheat, field corn, and soybean sown into soil inoculated with Rhizoctonia solani AG 2-2 IV, AG 2-2 IIIB, or not inoculated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil treatment</td>
</tr>
<tr>
<td>Non-inoculated</td>
</tr>
<tr>
<td>R. solani AG 2-2 IV</td>
</tr>
<tr>
<td>R. solani AG 2-2 IIIB</td>
</tr>
<tr>
<td>ANOVA P-value</td>
</tr>
</tbody>
</table>

* Inoculum of *R. solani* was grown for 3 weeks on sterilized barley, air-dried in the greenhouse, and hand spread in plots on May 4 at an equivalent of 31 lb A⁻¹.

* Sweet corn and field corn were rated on a 1-5 scale where 1 = less than 2% of roots were discolored or decayed, 5 = entire root system rotted and plant dead or dying (7). Each number is an average of 60 plants (10 plants/plot x 6 replicates).

* Wheat subcrown internodes were rated on a 0-3 scale where 0 = clean and healthy and 3 = more than 50% of the surface with lesions and discoloration (9). Each number is an average of 120 plants (20 plants/plot x 6 replicates).

* Soybean basal stems and roots were rated on a 1-5 scale where 1 = no symptoms and 5 = shoot dead and more than 75% of stem girdled (2). Each number is an average of 120 plants (20 plants/plot x 6 replicates).
<table>
<thead>
<tr>
<th>Soil treatment</th>
<th>Sweet corn (ton A⁻¹)</th>
<th>Wheat (Bu A⁻¹)</th>
<th>Field corn (Bu A⁻¹)</th>
<th>Soybean (Bu A⁻¹)</th>
<th>ANOVA P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-inoculated</td>
<td>11.8</td>
<td>11.4</td>
<td>7.3</td>
<td>46</td>
<td>228</td>
</tr>
<tr>
<td>R. solani AG 2-2 IV</td>
<td>9.9</td>
<td>11.1</td>
<td>7.2</td>
<td>48</td>
<td>212</td>
</tr>
<tr>
<td>R. solani AG 2-2 IIIB</td>
<td>11.0</td>
<td>10.8</td>
<td>8.1</td>
<td>48</td>
<td>217</td>
</tr>
<tr>
<td>ANOVA P-value</td>
<td>0.062</td>
<td>0.938</td>
<td>0.373</td>
<td>0.923</td>
<td>0.185</td>
</tr>
</tbody>
</table>

* Inoculum of *R. solani* was grown for 3 weeks on sterilized barley, air-dried in the greenhouse, and hand spread in plots on May 4 at an equivalent of 31 lb A⁻¹.

x Sweet corn and field corn yield estimates were made by hand-harvesting all ears within 20 feet of row per plot on August 24, September 14, and September 27 for early-, mid-, and late-maturing sweet corn varieties, respectively, and September 27 for field corn. Field corn ears were shelled with a stationary corn sheller.

y Wheat yield estimates were made with a small plot combine.

z Soybean yields are not reported as data was compromised by severe iron chlorosis in several plots.

DISCUSSION

In this experiment, inoculation of soil with *R. solani* AG 2-2 IV or 2-2 IIIB did not affect root rot or yield of sweet corn or any rotation crops compared to a non-inoculated control. Also, the fungus was infrequently recovered from roots of all crops, regardless of soil treatment. These results are not consistent with previous trials where root rot ratings of field corn were significantly higher in plots inoculated with *R. solani* AG 2-2 IIIB (11,12) and the fungus was isolated more frequently compared to non-inoculated plots. Previous trials also have shown consistent recovery of *R. solani* from soybean plants in plots inoculated with *R. solani* AG 2-2 IV and AG 2-2 IIIB compared to non-inoculated controls (1,12). As in previous trials, growing wheat in Rhizoctonia-inoculated soil did not affect yield and the fungus was infrequently recovered compared to the non-inoculated control (11,12). Inconsistencies in the 2010 trial compared to previous trials may reflect different environmental factors including soil moisture, temperature, and other pathogens and microbes present in the soil. In 2011, sugar beet will be sown in the 2010 experiment site to determine possible carry-over effects of soil inoculation with *R. solani* and previous crop on Rhizoctonia crown and root rot.

ACKNOWLEDGEMENTS

We thank the Sugarbeet Research and Education Board of Minnesota and North Dakota and the University of Minnesota, Northwest Research and Outreach Center (NWROC), Crookston for funding this research, staff from the Southern Minnesota Beet Sugar Cooperative, Renville and NWROC for maintenance of plots and collection of data, and Dr. John Lamb, University of Minnesota, Dept. of Soil, Water and Climate for harvesting some of the field crops.

LITERATURE CITED

