

Effective and Economic Management of Cercospora Leaf Spot and Targeting 35 Tons/Acre

Mohamed F. R. Khan & Peter Hakk Professor & Extension Sugarbeet Specialist North Dakota State University & University of Minnesota

Congratulations NDSU!

Cercospora Leaf Spot - Symptoms

- Fungus Cercospora beticola
- Circular spots on leaves 1/8 to 3/16" diameter on largest, most productive leaves first

Death of Leaves Reduce Photosynthetic Capacity of Plants – Reduced Tonnage and Sucrose Concentration

Percent Sugar = 20.33% Percent Sugar = 17.71% Percent Purity = 88.10% Percent Purity = 90.50% Sugar per Ton = 293.25 lbs Sugar per Ton = 351.09 lbs \$373.49 per Tons per Acre = 28.56 Ton Tons per Acre = 31.65 Ton Acre Loss Sugar per Acre = 8,374 lbs Sugar per Acre = 11,111 lbs Return = \$1,143.10 **Return = \$1,516.59**

Grower's Field in 2016 – 5 Fungicide Applications

Fields With Fungicide Failures

Real time PCR was used for detection of G143A mutation in *Cytb* gene, which is found in the QoI-resistant *Cercospora beticola* isolates, but not in the QoI-sensitive isolates. Two specific probes were used (Sensitive-specific probe 6FAM-TGAG[G]TGCAACTGTTATTACTAA-BHQ-1 and G143A-specific probe HEX-TGAG[C]TGCAACTGTTATTACTAA-BHQ-1).

	Ct value	
Isolate	Sensitive (FAM)	Resistant (HEX)
38-1	N/A	15.2
38-2	N/A	15.7
38-3	N/A	13.9
38-4	N/A	17.5
39	N/A	37.8
42	N/A	14.8
43	N/A	17
194 (Resistant control)	N/A	14.1
351 (Sensitive control)	15.2	N/A
Water control	N/A	N/A

Foxhome, MN Plot Tour August 29, 2017

Foxhome, MN 2017 – Planted 5/5; Inoculated 6/29; Fungicides – 7/19, 31; 8/7, 21, 9/6

Effect of Individual Fungicides and Mixtures at Controlling CLS in 2017

Non-Treated Check August 29 and September 15

QoI A + SDHI Priaxor

QoI B - Gem

QoI C - Pyrac

QoI A + SDHI Priaxor

QoI B - Gem

QoI C - Pyrac

Headline 9 fl oz / Inspire XT 7 fl oz / Headline 9 fl oz/ Proline 5 fl oz + NIS

Minerva 4x

Inspire XT 4x

Topguard 4x

Efficacy of Fungicides at Controlling *Cercospora beticola* Resistant to QoI Fungicides

Treatments @ 14 d	CLS	ton/A	c S%	RSA (lb/Ac)
Nontreated Check	10.0	26	15.6	8,099
TPTH (Tin)	5.0	33	17.0	10,417
Proline + NIS	5.8	34	17.0	10,628
Proline + NIS + TPTH	4.5	35	17.9	11,837
Inspire XT	8.3	34	16.9	10,377
Inspire XT + TPTH	4.8	35	17.4	11,348
Minerva	9.3	31	16.2	9,3047
Minerva Duo	4.8	35	17.6	11,809
LSD (0.05)	0.6	3.1	1.0	1,203
CLS 1-10 scale (1=No CLS;	10=regrowt	h)		
S%= sugar concentration				

[TPTH (Triphenyltin hydroxide –Tin) 8 fl oz] 4x

(Proline 5 fl oz + NIS) 4x

(Proline 3.8 oz + TPTH 6 oz) 4x

Proline 4x

(Proline + TPTH) 4x

— Inspire XT 7 fl oz 4x

(Inspire XT + TPTH) 4x

Minerva 13 fl oz - 4x

Minerva Duo - 4x

Badge SC – Copper (2016 [3x] vs 2017 [4x])

Badge SC 3 pt + Inspire XT 5.3 fl oz

Manzate 2.4 pt + Proline 3.8 fl oz + 0.125 % NIS

(Minerva Duo 16 fl oz + <u>Badge</u> SC 4 pt) 4x

(Minerva Duo 16 fl oz + <u>Manzate</u> 1.6 qt) 4x

- ManKocide 4.3 lb/Ac 4x

(TPTH 6 oz + Topsin 10 oz) 4x

Sensitivity of *C. beticola* isolates collected in 2017 to Eminent, Inspire and Proline by factory district as expressed by Resistance Factor Values – Secor et al.

Sensitivity of *C. beticola* isolates collected in ND and MN to Headline from 2012 to 2017 as expressed by the percentage of spores with G143A mutation

Summary – Fungicides Used Alone and in mixtures

- Cercopora population is still resistant to QoI (or strobilurin) fungicides (Priaxor, Gem, Headline).
- Cercospora population is developing resistance to other fungicides (triazoles, TPTH, Topsin).
- It is best to use mixtures of fungicides for each application.
- Always mix triazoles (and strobilurins) with a broad spectrum fungicide (Mancozeb, Copper, TPTH, Mankocide).

Use of Fungicides in a Rotation Program for Controlling CLS in 2017

Non-Treated Check – August 29, 2017

1. Inspire XT + Topsin / 2. TPTH + Manzate / 3. Minerva Duo/ 4.TPTH + Manzate /5. (Proline + Manzate)

No Application 5.

Minerva Duo/ TPTH + Manzate / Priaxor + Manzate / Inspire XT + Manzate

Inspire XT + Manzate / TPTH + Manzate/ Minerva Duo/ TPTH + Manzate

Fungicide Mixtures in Alternation Provided Effective Control of *Cercospora beticola* in 2017

Treatments @ 14 d	CLS	<u>RS (lb/ac)</u>
Nontreated Check	10.0	8,289
Inspire XT + Topsin / TPTH + Manzate / Minerva Duo /		
TPTH + Manzate / Proline + Manzate (10-12 d)	4.3	12,085
Inspire XT + Topsin / TPTH+ Manzate / Minerva Duo / TPTH + Manzate	4.8	11,309
TPTH + Topsin / Inspire XT + Badge / TPTH + Manzate / Minerva Duo + Badge SC	5.3	11,218
LSD P=0.05	0.6	1,156

It was Economical to Use Fungicide For CLS Control in 2017

Treatments @ 14 d	RS	Net \$
Nontreated Check	8,289	831
Inspire XT + Topsin / TPTH + Manzate / Minerva Duo /		
TPTH + Manzate / Proline + Manzate (10-12 d)	12,085	1,449
Inspire XT + Topsin / TPTH + Manzate / Minerva Duo /		
TPTH + Manzate	11,309	1,349
TPTH + Topsin / Inspire XT + Badge / TPTH + Manzate /		
Minerva Duo + Badge SC	11,218	1,278
LSD <i>P</i> =0.05	1,156	225
\$447 to \$618 more/acre after paying for fungicide	S	

Grower's Field in 2016 – 5 Fungicide Applications

2017 - Sweet Success!

Summary

- CLS was severe because of high Cercospora inoculum pressure and favorable environmental conditions; especially in central and southern Minnesota.
- Use of fungicide mixtures with effective and different modes of action resulted in effective and economical control of CLS.
- The practice of crop rotation, use of CLS tolerant varieties, and using recommended fungicide mixtures starting at first symptoms and continuing at intervals based on weather conditions (14 d in dry and 10-12 in wet), and using aerial application when necessary to keep the crop protected, will result in effective control of CLS, and over time, reduction of inoculum pressure.

American Crystal Sugar Tons/Acre and Sugar Concentration (%) from 1926 to 2017

Minn-Dak: Tonnage and Sucrose Concentration 2005 - 2017

Tonnage and Sucrose Concentration at Sidney Sugars, MT 2008 - 2017

Fig. 3 – Historic paid beet yield in adjusted t/ha.

UK

France

57,1

95

Carbon Dioxide Concentration

This graph shows the monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, Hawaii, measured since 1958. A single data point has been added for the concentration recorded on May 9. The black curve represents the seasonally corrected data. (high resolution graphic)

North Dakota & Minnesota 2017 Crop

>ACSC 30.2 tons/Ac	18.11% Sugar
Minn-Dak 32.3 tons/Ac	17.0% Sugar
SMBSC 30.29 tons/Ac	16.37 % Sugar

Tons/Ac% SSLMRSA47.1018.271.005217,209

45.07

<u>51.02</u> 16.18 1.4060 16,510

16.90 Spreckels – Irrigated (Aug-June)

Nitrogen Rates Impact on Sugarbeet Yield and Quality 2010, 2011

<u>N rates:lb/A</u>	Varieties
70	A - Prostrate
100	B – Erect
130	
160	

Variety A – June, 2010

Variety B – June, 2010

70 lb/A N, Variety A

100 lb/A N, Variety A

130 lb/A N, Variety A

70 lb/A N, Variety B

100 lb/A N, Variety B

130 lb/A N, Variety B

Impact of Nitrogen Rates on Recoverable Sucrose - 2010

Impact of Nitrogen Rates on Recoverable Sucrose - 2011

Ag Notes: 535 - N Fertility for Roundup Ready Varieties, 3-9-10

Conclusions:

- Maximum yields were at 117-147 lbs/A, close to recommended rates
- The Roundup Ready® varieties peaked at about the same rate of available N as conventional varieties
- Planted on May 14, 2009
- Data is an average from 4 Roundup Ready® varieties C-658, C-765, H-4012, B-87RR38
- N fertilization rate may vary based on soil type (See agriculturist for data)

Effect of Planting Date (May 28, June 11) and Population on Sugarbeet Yield - 2009

Effect of Planting Date (May 20, June 21) and Population on Sugarbeet Yield - 2010

Early Planting
Late Planting

Figure 2. Effect of Plant Population On Roundup Ready Variety Yield and Quality, UM, NWROC, Smith, 2009

Conclusions:

- Maximum RSA and Rev/A was achieved at 175 beets/100' row
- 200 beets/100' of row had only a slight detrimental effect
- Data shown is an average of two Roundup Ready® varieties C-658 and H-4010
- Grower practices database also shows maximum RSA at 175-200 beets/100'
- Planted May 18, 2009
- · It may be necessary to thin very high plant populations

Targeting 35 to 40 tons/acre and 18.5% Sugar

- Select high yielding varieties with <u>disease resistance package matched to the</u> <u>field</u>; use recommended 130 lb N/Ac.
- > Plant as early as possible aiming for 175 to 225 plants per 100 foot of 22" row.
- Use appropriate insecticide/fungicide seed treatments; target Rhizoctonia and Aphanomyces (and insect pests - sugarbeet root maggot, springtails, wireworm, etc: *Dr. Boetel*).
- Apply Quadris/Generics/Priaxor/Proline for Rhizoctonia; Tach 45 gm and Precipitated calcium carbonate (Waste lime) for Aphanomyces (*Dr. Chanda*).
- > Manage weeds use R/up, post-emergence, lay-by etc (Dr. Peters).
- > Control <u>Cercospora</u> using <u>fungicide mixtures</u>.
- > Start pre-pile in August to increase processing period.
- > Have a bountiful harvest, good storage and processing, and high sugar prices.
- > Thank You!

Acknowledgements –**Thank You!**

- Growers through SBREB for funding research and educational programs.
- Seed, chemical and allied industries, and agriculturists and consultants for assistance.
- Kevin Etzler, Vince Ulstad, and Kevin Nelson for research conducted on their farms.
- Personnel at ACSC tare laboratory, East Grand Forks.
- **Colleagues at NDSU for assistance in harvesting.**
- Peter Hakk and summer interns for conducting field research.