

Don't Let the Root Rots Beat your Beets

2019 ASCS Growers' Seminar

Ashok K. Chanda

Assistant professor/ Extension Sugarbeet Pathologist Northwest Research and Outreach Center, Crookston Dept. of Plant Pathology, University of Minnesota

Summary of Field Samples 2016 - 2018

Rhizoctonia + Aphanomyces

Damping-off

Rhizoctonia

Crown and Root Rot

Crown and Root Rot

Management of Rhizoctonia

Early planting

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Length of rotation
 - Weed control
 - Crop choice

Soybeans

Soybeans

Navy beans

Navy beans

Navy beans

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties

Rhizoctonia rating scale

Reynolds et al.

Rhizoctonia & Resistant Variety (~3.4)

Rhizoctonia & Moderately Resistant Variety (~4.0)

Rhizoctonia & Susceptible Variety (~5.3)

Rhizoctonia affects Yield

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties
- At-planting fungicides
 - Seed treatment

Seed treatments

- SDHI class of fungicides
- Single site of action (<u>Succinate</u>
 <u>DeHydrogenase Inhibitor</u>)
- Inhibit fungal respiration

Seed treatments

- Kabina 14 g (Penthiopyrad, 2014)
- Vibrance 1.5 g (Sedaxane, 2016)
- Systiva 5 g (Fluxapyroxad, 2017)
- Metlock Suite [Metconazole + Rizolex) + Kabina 7g (Penthiopyrad), 2014)
- Since 2017, 100% seed is treated for Rhizoctonia and treatment depends on the seed companies' choice

Seed treatments – 2016

Benefits of seed treatments

- Sugarbeet seedlings are very susceptible to Rhizoctonia early on
- Genetic resistance is not expressed until 6-8 leaf stage
- Effective protection of seedling (4-5 weeks)
- Ease of use -It comes with seed
- Safety
- No plugged nozzles

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties
- At-planting fungicides
 - Seed treatment
 - In-furrow application

In-furrow fungicides – 2016

- Via Drip Tube
- Fungicide in 3 gal Water and add to 3 gal. 10-34-0

In-furrow fungicides – 2016

- → Quadris I-F 10 fl oz
- ---Satori I-F 10 fl oz
- ---Xanthion I-F 9 + 1.8 fl oz
- --- Headline I-F 9 fl oz
- Untreated control

In-furrow fungicides

Benefits

- Sanitizing the furrow (seedling + soil)
- More effective than seed treatments longevity up to 8-10 weeks (Windels, 2010)

Risks

- Phytotoxicity
 - cool weather, dry conditions and light soils
 - Mixing with starter fertilizer and other chemicals
- Plugged nozzles

10-34-0 + azoxystrobin

10-34-0 + azoxystrobin

10-34-0 + azoxystrobin

10-34-0 + Fungicides: <u>0 minutes</u> (shaken and poured in to a jar after sitting for 6 hours after mixing and application in the field)

10-34-0 + Fungicides: 10 minutes

Seed vs In-furrow fungicides - 2015

Treatment	No. harv. Roots/100 ft.	RCRR (0-7)	Yield	RSA	
Seed treatments	98	3.9	20.1	6181	
oced treatments	90	5.9	20.1	0101	
In-furrow treatments	127	2.7	25.5	7772	
Contrast analysis <i>p</i> -					
value	0.001	0.006	0.0032	0.0148	
Seed Treatments	In-furrow				
14 g Kabina ST	12 fl oz Headline IF				
Metlock Suite	10	NS = not			
Met. Suite + 7 g Kabina	10	10 fl oz Equation IF			
7 g Kabina ST	1	10 fl oz Satori IF			
2 g Vibrance					

Seed vs In-furrow fungicides - 2018

Treatment	No. harv. roots/100 ft	RCRR (0-7)	Yield ton A ⁻¹	RSA
Seed treatments	151	0.7	32.8	10440
In-furrow treatments	141	0.4	32.2	10528
Contrast analysis P- value	0.01	0.01	0.5	0.5
			NS	NS

Seed Treatments

14 g Kabina ST

Met. Suite + 1 g Vibrance

Met. Suite + 7 g Kabina

5 g Systiva

1.5 g Vibrance

In-furrow

9.5 fl oz Quadris

11.9 fl oz AZteroid

Xanthion (Headline + Integral, 9 + 1.8 fl oz/A)

Elatus 9.5 fl oz (* not registered for sugarbeet)

NS = not significantly differer

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties
- At-planting fungicides
 - Seed treatment
 - In-furrow application
- Postemergence fungicides

4-inch soil temp daily means

Postemergence Application - 2017

4-leaf stage
June 12

8-leaf stage
June 20

Cultivar x postemergence interaction on disease incidence - NWROC

Postemergence application (7 inch band)

Cultivar x at-planting x postemergence (7 inch band) interaction on disease incidence - SMBSC

Postemergence fungicides – 2015 Quadris vs Generics

Treatment	RCRR (0-7)	Yield T/A	RSA
Non-inoculated	(0-7)	IIA	
No-fungicide control	3.4	24.3	6263
R. solani-inoculated			
Equation @ 14 fl oz/A	1.9 d	31.0 a	8066 a
Quadris @ 14 fl oz/A	2.4 d	29.9 a	7908 a
Satori @ 14 fl oz/A	2.4 d	29.6 a	7790 a
No-fungicide control	5.5 a	14.0 c	3411 c
ANOVA <i>P</i> -value	0.0001	0.004	0.002
LSD $(P = 0.05)^{Z}$	1.4	8.3	2284

Postemergence fungicides

Benefits

- If you are doing a row cultivation--throwing soil onto crowns
- Late season disease control (rain aug-sept)
- If sugarbeets are following Rhizoctonia-susceptible crops in a rotation
- Band application (preferred) severe disease pressure
- Broadcast application low disease pressure

Risks

Work better if applied before infection

Rhizoctonia plan for 2019

Past Rhizoctonia pressure (beets/100 ft. row at harvest)	Variety (Your Choice)	Seed treatment	In-furrow treatment	Postemergence treatment
Low (170-200)	Moderate	Yes	No	No
	Weak	Yes	No	Yes

Specialty < 4.0 Rhizoctonia rating Moderate 4.0 – 4.4 Weak > 4.4

Rhizoctonia plan for 2019

Past Rhizoctonia pressure (beets/100 ft. row at harvest)	Variety (Your	Seed	In-furrow	Postemergence
	Choice)	treatment	treatment	treatment
Low (170-200)	Moderate	Yes	No	No
	Weak	Yes	No	Yes
Moderate (130 - 170)	Specialty Moderate Weak	Yes Yes Yes	No No Yes/No (History)	Yes/No (History) Yes Yes

Rhizoctonia plan for 2019

Past Rhizoctonia pressure (beets/100 ft. row at harvest)	Variety (Your	Seed	In-furrow	Postemergence
	Choice)	treatment	treatment	treatment
Low (170-200)	Moderate	Yes	No	No
	Weak	Yes	No	Yes
Moderate (130 – 170)	Specialty Moderate Weak	Yes Yes Yes	No No Yes/No (History)	Yes/No (History) Yes Yes
Severe (less than 130)	Specialty Moderate Weak?	Yes Yes Yes	No Yes Yes	Yes Yes Yes

Summary- Rhizoctonia Management

- Seed treatments provide excellent early-season protection
- In-furrow applications
 - Similar to seed treatments under low disease pressure
 - Better than seed treatments under high disease pressure
 - May reduce stands under cool and dry soil conditions
- Seed/in-furrow treatments can broaden the window to apply postemergence application (4 to 8 leaf stage)
- Postemergence application is most beneficial under moderate to heavy disease pressure, especially if beets are following soybeans or edible beans
- Generic formulations of azoxystrobin are effective

Aphanomyces

Aphanomyces can be a full-season pathogen

Aphanomyces damping-off

Aphanomyces root rot

Life Cycle of Aphanomyces cochlioides

Correlation of sugar yield with Aphanomyces root rot

Early planting

Seed Treatment

Tachigaren (Hymexazol)

Aphanomyces Root Rot

Early planting

Resistant variety < 4.4

Varietal Selection

Seed Treatment

Tachigaren (Hymexazol)

Aphanomyces Root Rot

Spent Lime

	Anhanomyce	es rating (0-7)	Recoverable sucrose (lb/A)		
	Aprianomyc		Necoverable	Sucrose (ID/A)	
Lime rate	Res. + Tach	Susc. No Tach	Res. + Tach	Susc. No Tach	
0	3.6	5.8	5656	4007	
5	2.6	5.2	7123	6034	
10	2.5	4.6	7211	6473	
15	2.2	3.5	8408	8109	
20	2.2	3.5	8631	8352	
Linear	**	***	***	***	
Quadratic	NS	NS	NS	NS	

^{* =} significant at P = 0.05

NS = not significant

Planting: May 22

Harvest: September 22

^{** =} significant at P = 0.01

^{*** =} significant at P = 0.001

	Aphanomyc	es rating (0-7)	Recoverable sucrose (lb/A)		
Lime rate	Res. + Tach	Susc. No Tach	Res. + Tach	Susc. No Tach	
0	1.7	4.2	8684	5301	
5	1.4	2.8	8857	8806	
10	1.6	2.4	9395	9164	
15	1.2	1.6	9318	9698	
20	1.3	1.7	9367	10506	
Linear	**	***	NS	***	
Quadratic	NS	*	NS	**	

^{* =} significant at P = 0.05

NS = not significant

Planting: April 26

Harvest: September 28

^{** =} significant at P = 0.01

^{*** =} significant at P = 0.001

Original	Aphanomyces rating (0-7)	Recoverable sucrose (lb/A)
	Aprianomyces rating (0-7)	Necoverable sucrose (ID/A)
Lime rate	(Res. + Susc. varieties)	(Res. + Sus. varieties)
0	5.6	738
5	5.1	1966
10	4.8	2380
15	4.2	3258
20	4.3	3404
Linear	***	***
Quadratic	NS	NS

* = significant at P = 0.05

** = significant at P = 0.01

*** = significant at P = 0.001

NS = not significant

Planting: May 06 Harvest: Sept 26

Benefit of additional 5 T/A lime after 2 years

Supplemental lime	Soil Ca (ppm)	Stand at 7 weeks (per 100 ft)	Harvested roots (per 100 ft)	Aph RRR (0-7)	Yield (ton/A)	Sucrose (%)
None	4132	115	101	3.5	20.3	12.6
5 ton/A	4696	133	122	2.6	22.9	12.8
Significance	***	**	**	**	**	NS

^{* =} Significant at P = 0.05

^{** =} Significant at P = 0.01

^{*** =} Significant at P = 0.001

Aphanomyces Plan for 2019

Current lime rate

Add 5-10 ton/A spent lime

5 ton/A

Add 5 ton/A spent lime

Apply based on field history

Acknowledgements

- Sugarbeet Research and Education Board of Minnesota and North Dakota
- Grower cooperators
- Scott Pahl, Germains Seed Technology
- Seed, chemical, and allied industries
- American Crystal Sugar Company quality lab
- Minn-Dak Farmers Cooperative
- Southern Minnesota Beet Sugar Cooperative

Alec

Claire

Tim Muira Brandon Karen

Thank you!

Amanda

Pratibha

Dr. Ian MacRae Tim

Hal