

Cultivation for Weed Control in in Sugarbeet

Austin Neubauer, Nathan Haugrud and Tom Peters, SMBSC, NDSU and Univ. of MN

Summary of Cultivation Research in Sugarbeet

Nathan Haugrud and Tom Peters, NDSU

Sugarbeet Weed Management in 2018

- Limited POST control options
 - Herbicide resistant pigweeds (waterhemp and Palmer amaranth)
 - Loss of historical herbicides (des+phenmedipham, "Betamix")
- Chloroacetamide herbicides soil applied (layby)
 - POST to sugarbeet, PRE to weeds (Peters et al. 2017)
- Renewed interest in cultivation

T. Peters (2018)

Inter-row Cultivation

Benefits:

- Non-selective mode of action
- No risk of resistance
- Incorporation of fertilizer and herbicide

Drawbacks:

- Limited area
- Potential yield damage (Dexter et al. 2000; Giles et al. 1990)
- Increased disease risk
 (Schneider et al. 1982)

Cultivation Research Questions

- Cultivation to remove herbicideresistant weeds?
- Effects on weed emergence?
- Interactions with residual herbicide?
 - Incorporation and activation
 - Damage to an established herbicide barrier?
- Negative effects on sugarbeet yield and quality?

NDSU Extension 2016

Herbicide applied at standard rates, volume, & pressure

- Herbicide: Four/six levels
 - Glyphosate alone
 - Gly + Dual Magnum
 - Gly + Outlook
 - Gly + Warrant
 - Gly + Treflan
 - Gly + Ro-neet

Cultivation at 4 MPH and 1.5 - 2" depth

Cultivation immediately after herbicide resulted in 50-75% less waterhemp, 14 DAT

	Cultivation			Herbicide	C X H Interaction
ANOVA	Renville, 2017	Hickson, 2018	Nashua, 2018	All environments	
P-value	0.009	0.002	0.019	NS	NS

Cultivation two weeks after herbicide resulted in 65% less waterhemp at Renville, 14 DAT

Early cultivation generally had no effect on new waterhemp emergence control

Delayed cultivation decreased waterhemp emergence at Renville, 14 DAT

Early cultivation resulted in 6-11% improved Initial removal of overall control, 42 DAT linitial removal of 65% of weeds +

	Cultivation			Herbicide	C X H Interaction
ANOVA	Renville, 2017	Hickson, 2018	Nashua, 2018	All environments	
P-value	0.008	0.002	0.041	NS	NS

Early cultivation increased common lambsquarters emergence, Galchutt-2018, 28 DAT

ANOVA	Cultivation	Herbicide	C X H Interaction
P-value	0.018	< 0.001	NS

Early cultivation decreased C. lambsquarters control at Galchutt-2018

Cultivation at either timing had no effect on overall C. lambsquarters control, 42 DAT

Cultivation Efficacy Summary

- Cultivation can remove about 2/3rds of weeds
- Generally no effect on waterhemp emergence
- Cultivation improved season-long waterhemp control by 6 to 19%
- No effect on lambquarters control, but risk for reduced seedling control if timed too early
- Take advantage of crop canopy by cultivating later

Cultivation Effect on Sugarbeet Yield

- Past research from 1980s and 1990s indicate yield loss from cultivation in certain environments
- Increased Rhizoctonia solani infection
 - Moving soil-borne pathogen nearer its host

Khan and Bolton 2016

Cultivation Safety: Experimental Procedures

- Cultivation every 2 weeks from June
 21 to August 16
- 'Crystal 355' planted early-May
- 4 MPH speed and 1.5-2 inches deep
- Quadris (azoxystrobin) for Rhizoctonia control

Cultivation timing had no effect on stand mortality or visual disease at any environment

		Stand mortality a	
Cultivation timing	Prosper	Hickson	Glyndon
		%	
Control	15	32	-14
June 21	20	37	-1
July 5	15	37	4
July 19	20	41	-10
August 2	11	32	-1
August 16	13	30	10
June 21 + July 19	13	31	-7
July 5 + Aug 2	19	36	4
July 19 + Aug 16	21	39	7
June 21 + July 19 + Aug 16	16	37	7
ANOVA		p value	
Treatment	0.082	0.435	0.848

Pre treatment stand
Harvest stand x 100 = % Stand mortality

Cultivation timing had no effect on sugarbeet yield across all environments in 2018

	Yield Components			
Cultivation timing	Root yield	Sucrose content	RSA	
	Tons/acre	%	Lbs/acre	
Control	24.3	15.0	6,817	
June 21	24.1	14.8	6,773	
July 5	24.7	14.9	6,934	
July 19	23.5	14.9	6,563	
August 2	25.4	14.7	6,899	
August 16	24.4	14.5	6,529	
June 21 + July 19	24.3	14.5	6,679	
July 5 + Aug 2	24.7	14.6	6,698	
July 19 + Aug 16	23.5	14.8	6,472	
June 21 + July 19 + Aug 16	23.5	14.8	6,540	
ANOVA	p value			
Treatment	0.944	0.062	0.947	

Conclusion: Cultivation timing had no effect on sugarbeet yield, stand density, or disease in 2018

- Differences between our experiments and previous research
 - Similar cultivation methods, but different timing and intervals
 - Dexter et al. (2000) and Giles et al. (1990) implemented weekly cultivation from mid-June to late-July
- Differences in production practices in 2018 vs the 1990s
 - Seed treatments and soil-applied Quadris (azoxystrobin)
 - Crystal 355', a diploid, is relatively resistant to R. solani

The Future of Cultivation: 2019 and Beyond

- Valuable tool to removal weeds that herbicide did not/will not control
- Timing is key: cultivate near crop canopy closure
 - No effects on weed emergence if shade is present
- No effect on yield in 2018, but repeats in future years are needed

