

Management of Rhizoctonia, Aphanomyces and Fusarium Diseases in Sugarbeet

2020 ACSC Growers' Seminar

Ashok K. Chanda

Assistant professor & Extension Sugarbeet Pathologist
Northwest Research and Outreach Center, Crookston
Dept. of Plant Pathology, University of Minnesota

Summary of Field Samples 2016 - 2019

Accurate Diagnosis is critical!

Uninvited Guests!

Damping-off

Crown and Root Rot

Crown and Root Rot

Crown and Root Rot

Rhizoctonia rating scale

Photo Credit: Greg Reynolds

Rhizoctonia affects Yield

Resistant and Moderately Susceptible Varieties

Rhizoctonia

- Fungus Rhizoctonia solani
- 13 Anastomosis groups
- Sugarbeet- Anastomosis groups AG 2-2 (seedling and adult) and AG 4 (seedling)
- AG 2-2 has intraspecific groups (ISGs)
 - AG 2-2 IIIB and AG 2-2 IV
- Both ISGs cause same symptoms on sugarbeet
- Both occur in MN/ND (Windels, 2009)

AG 2-2 IV vs AG 2-2 IIIB

Management of Rhizoctonia

Early planting

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Length of rotation
 - Weed control
 - Crop choice

Soybeans

Soybeans

Navy beans

Navy beans

Navy beans

Corn

https://cropwatch.unl.edu/corn-seedling-diseases-2015

Amber Buzzard, Corteva agriscience https://www.youtube.com/watch?v=DP vfnQVaKCI

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties

Rhizoctonia varieties

Rhizoctonia & Varietal Selection

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties
- At-planting fungicides
 - Seed treatment

Seed treatments

- SDHI class of fungicides
- Single site of action (<u>Succinate</u>
 <u>DeHydrogenase Inhibitor</u>)
- Inhibit fungal respiration

MOA	TARGET SITE AND CODE	GROUP NAME	CHEMICAL OR BIOLOGICAL GROUP	COMMON NAME	COMMENTS	FRAC
	64	pyrimidinamines	pyrimidinamines	diflumetorim	Resistance not known.	39
	C1 complex I NADH Oxido-reductase	pyrazole-MET1	pyrazole-5- carboxamides	tolfenpyrad		
	Oxido-reduciase	quinazoline	quinazoline	fenazaquin		
	C2 complex II: succinate-dehystro- genase	SDHI (Succinate- dehydrogenase inhibitors)	phenyl-benzamides	benodanil flutolanil mepronil	Resistance known for several fungal species in field populations and lab mutants. Target site mutations in sdh gene, e.g. H/Y (or H/L) at 257, 267, 272 or P225L, dependent on fungal species. Resistance management required. Medium to high risk. See FRAC SDHI Guidelines for resistance management.	7
			phenyl-oxo-ethyl thiophene amide	isofetamid		
C. respiration			pyridinyl-ethyl- benzamides	fluopyram		
			furan- carboxamides	fenfuram		
			oxathiin-	carboxin		
			carboxamides	oxycarboxin		
			thiazole- carboxamides	thifluzamide		
			pyrazole-4- carboxamides	benzovindiflupyr bixafen fluindapyr		
				fluxapyroxad		
				turametpyr inpyrfluxam		
				isopyrazam penflufen		
				penthiopyrad sedaxane		
			N-cyclopropyl-N- benzyl-pyrazole- carboxamides	isoflucypram		
			N-methoxy-(phenyl- ethyl)-pyrazole- carboxamides	pydiflumetofen		
			pyridine- carboxamides	boscalid		
			pyrazine- carboxamides	pyraziflumid		

https://www.frac.info/docs/default-source/publications/frac-code-list/frac-code-list-2019.pdf

SDHI Fungicide Overview

 SDHI fungicides: Respiration inhibitors: Target succinate dehydrogenase reductase enzyme

4 subunits

Sara Villani, NCSU; https://www.canr.msu.edu/nwmihort/2016-swdsummit/22SM%20Villani%20IPM%20School%20SDHI%202017.pdf

Seed treatments

- Kabina 14 g (Penthiopyrad, 2014)
- Vibrance 1.5 g (Sedaxane, 2016)
- Systiva 5 g (Fluxapyroxad, 2017)
- Metlock Suite [Metconazole + Rizolex) + Kabina 7g (Penthiopyrad), 2014)
- From 2017, 100% seed is treated for Rhizoctonia and treatment depends on the seed companies' choice

Metconazole and Rizolex are not SDHI

Seed treatments - 2015

Planting date: May 04

Seed treatments – 2016

Planting date: June 24

2019 Seed Treatments –Susceptible Variety (4.5 rating)

Benefits of seed treatments

- Sugarbeet seedlings are very susceptible to Rhizoctonia early on
- Genetic resistance is not expressed until 6-8 leaf stage
- Effective protection of seedling (4-5 weeks)
- Ease of use -It comes with seed
- Safety
- No plugged nozzles

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties
- At-planting fungicides
 - Seed treatment
 - In-furrow application

In-furrow application

Fungicide in 3 gal water + 10-34-0 3gal. applied via drip tube

10-34-0 + azoxystrobin

10-34-0 + azoxystrobin

10-34-0 + Fungicides: <u>0 minutes</u> (shaken and poured in to a jar after sitting for 6 hours after mixing and application in the field)

10-34-0 + Fungicides: 10 minutes

In-furrow treatments – 2016

Planting date: June 24

- → Quadris I-F 10 fl oz
- ---Satori I-F 10 fl oz
- → Xanthion I-F 9 + 1.8 fl oz
- ---Headline I-F 9 fl oz
- → Untreated control

In-furrow fungicide applied via drip

In-furrow treatments – 2018

Planting date: May 11

In-furrow treatments – 2019

Planting date: May 15

Susceptible Variety (4.5 rating)

Planted late June

Planting date:

Treatment	No. harv. Roots/100 ft.	RCRR (0-7)	Yield	RSA		
Seed treatments	98	3.9	20.1	6181		
In-furrow treatments	127	2.7	25.5	7772		
Contrast analysis <i>p</i> -						
value	0.001	0.006	0.0032	0.0148		
Seed Treatments	,	In-furro	w	RSA =	FC.	
14 g Kabina ST	12	12 fl oz Headline IF				
Metlock Suite	10 fl oz Quadris IF					
Met. Suite + 7 g Kabina	10 fl oz Equation IF					
7 g Kabina ST	1	0 fl oz Sato	ori IF			
2 g Vibrance						

Treatment	No. harv. roots/100 ft	RCRR (0-7)	Yield ton A ⁻¹	RSA
Seed treatments	151	0.7	32.8	10440
In-furrow treatments	141	0.4	32.2	10528
Contrast analysis P- value	0.01	0.01	0.5	0.5
			NS	NS

Seed Treatments

14 g Kabina ST

Met. Suite + 1 g Vibrance

Met. Suite + 7 g Kabina

5 g Systiva

1.5 g Vibrance

In-furrow

RSA = ESA

9.5 fl oz Quadris

11.9 fl oz AZteroid

Xanthion (Headline + Integral, 9 + 1.8 fl oz/A)

Elatus 9.5 fl oz (* not registered for sugarbeet)

NS = not significantly different

Plant Stand – MDFC, 2019

Renville, MN - 2019

In-furrow treatments

- Benefits
 - Sanitizing the furrow (seedling + soil)
 - More effective than seed treatments longevity up to 8-10 weeks (Windels, 2010)
- Risks
 - Phytotoxicity
 - cool weather and light soils
 - Mixing with starter fertilizer and other chemicals
 - Plugged nozzles

Management of Rhizoctonia

- Early planting
- Crop Rotation
 - Crop choice
 - Length of rotation
 - Weed control
- Resistant varieties
- At-planting fungicides
 - Seed treatment
 - In-furrow application
- Postemergence fungicides

Mean daily 4-inch soil temp. (2019)

MDFC Source: NDAWN Center, NDSU

Postemergence Application – SMBSC 2019

Planting date: May 14

4-leaf stage
June 10

8-leaf stage
June 19

SMBSC - Variety x Post

Root Rot Severity

Res = 3.9 variety Suc = 4.5 variety Planting date: May 14 4-leaf POST: June 10 8-leaf POST: June 19

Root Rot Incidence (Rating > 2.0)

SMBSC

Variety x Post

Res = 3.9 variety

Suc = 4.5 variety

Planting date: May 14 4-leaf POST: June 10 8-leaf POST: June 19

At-Plant x Post

Postemergence Treatments (2019) Susceptible Variety (4.5 rating)

Treatment	Day 36	# Harvested roots	Harv. Ioss	Rating	Incidence	Viold	Sugar	SLM	RST	RSA
				_					_	_
Quadris 14.5 fl oz	193	179	14	0.2	3	24.8	17.5	1.04	330	8184 a
Elatus 7.1 oz	180	170	10	0.2	3	24.1	17.6	1.01	332	8021 a
Azteroid 9.2 fl oz	196	184	12	0.3	5	23.9	17.6	1	331	7912 a
Quadris 10 fl oz	196	178	18	0.5	8	23.5	17.7	0.98	333	7846 a
Propulse 13.6 fl oz	187	174	13	0.9	19	23.3	17.5	1.02	329	7676 ab
Proline 5.7 fl oz	197	174	23	8.0	14	23.2	17.6	1.03	330	7651 ab
Quadris broadcast 14.5 fl										
oz	191	173	18	0.4	5	23.2	17.4	1.02	328	7617 ab
Priaxor 6.7 fl oz	176	151	25	1.2	20	20.6	17	1.06	319	6582 b
Untreated	195	104	91	4.6	74	12.2	16.7	1.16	310	3867 c
			<0.000			<0.00				
ANOVA P-value		< 0.0001	1	<0.0001	<0.0001	01	0.121	0.2291	0.1077	<0.0001
LSD (P = 0.05)		23.4	16.4	0.61	10.8	2.98	NS	NS	NS	1105

Postemergence fungicides – 2015 Quadris vs Generics

Treatment	RCRR (0-7)	Yield T/A	RSA
Non-inoculated	(0-7)	I/A	
No-fungicide control	3.4	24.3	6263
R. solani-inoculated			
Equation @ 14 fl oz/A	1.9 d	31.0 a	8066 a
Quadris @ 14 fl oz/A	2.4 d	29.9 a	7908 a
Satori @ 14 fl oz/A	2.4 d	29.6 a	7790 a
No-fungicide control	5.5 a	14.0 с	3411 c
ANOVA <i>P</i> -value	0.0001	0.004	0.002
LSD $(P = 0.05)^{Z}$	1.4	8.3	2284

Postemergence fungicides – 2015 azoxystrobin Band vs Broadcast

Treatment (Rates per Acre)	RCRR (0-7)	RCRR %	Yield T/A	RSA	
		Incidence			
No fungicide control	3.7 a	75 a	23.2 c	7324 c	
AZteroid @ 17.6 fl oz, band	0.7 b	15 b	33.6 ab	11084 ab	
Quadris @ 10 fl oz, band	0.9 b	16 b	33.5 ab	11272 a	
Quadris @ 14 fl oz, band	1.2 b	25 b	31.9 ab	10659 ab	
Quadris @ 14 fl oz broadcast	1.1 b	21 b	33.4 ab	10944 ab	
ANOVA <i>P</i> -value	<0.0001	<0.0001	<0.0001	0.0001	
LSD (P = 0.05)W	0.92	18.4	3.86	1451	

Postemergence fungicides

Benefits

- If you are doing a row cultivation--throwing soil onto crowns
- Late season disease control (rain Aug-Sept)
- If sugarbeets are following Rhizoctonia-susceptible crops in a rotation
- Band application (preferred) severe disease pressure
- Broadcast application low disease pressure

Risks

Work better if applied before infection

Summary

- Varietal Selection
 - Can make a difference under moderate to high disease pressure
- Seed treatments
 - Provide excellent early-season protection
- In-furrow applications
 - can reduce stands under dry and cool conditions
 - early to mid-season protection
- Postemergence fungicide application
 - 4-8 leaf stage window for application
 - Important for susceptible varieties
 - Seed treatment beneficial postemergence
 - Seed treatment + in-furrow fungicide may not be needed unless very severe field history

Aphanomyces can be a full-season pathogen

Aphanomyces root rot

Life Cycle of Aphanomyces cochlioides

Correlation of sugar yield with Aphanomyces root rot

Early planting

Original lime still reduced Aphanomyces in sugarbeet after 12 years (2016)

Original lime still improved sugar yield after 12 years

Effect of supplemental lime – across all original lime rates

Supplemental lime	Soil Ca (ppm)	Stand at 7 weeks (per 100 ft)	Harvested roots (per 100 ft)	Aph RRR (0-7)	Yield (ton/A)	Sucrose (%)
None	4132	115	101	3.5	20.3	12.6
5 ton/A	4696	133	122	2.6	22.9	12.8
Significance	***	**	**	**	**	NS

^{* =} Significant at P = 0.05

^{** =} Significant at P = 0.01

^{*** =} Significant at *P* = 0.001

Correlation of Aphanomyces root rot with soil extractable calcium

Correlation of sugar yield with soil extractable calcium

For fields with Aphanomyces:

Current lime rate

Add 5-10 ton/A spent lime

5 ton/A

Add 5 ton/A spent lime

Apply based on field history

Integrated Management of Aphanomyces

Management of Fusarium Yellows

- Moorhead, late 1990's
- 2004, 5 to 10% of fields
- 2018, ACSC

	# Townships
None	174
Slight	89
Moderate	20
Severe	

Fusarium on Seedlings

5.7 variety (06/17/2019)

4.3 variety (06/28/2019)

4.3 variety (08/06/2019)

2.5 variety

F. oxysporum

F. secorum

F. graminearum

Another F. spp recovered in 2019

Integrated Management of Fusarium

Acknowledgements

- Sugarbeet Research and Education Board of Minnesota and North Dakota
- Grower cooperators
- Scott Pahl, Germains Seed Technology
- Seed, chemical, and allied industries
- American Crystal Sugar Company quality lab
- Minn-Dak Farmers Cooperative
- Southern Minnesota Beet Sugar Cooperative

achanda@umn.edu

218-281-8625

WHY? WHAT? WHO?
WHERE? HOW? WHEN?

Hal

