Plant Pathology Highlights and Future Directions in Sugarbeet

Dr. Eric Branch NDSU & University of Minnesota

Outline

About Me

Plant Pathology Foundations for Sugarbeet

2023 Field Trials – Cercospora Leaf Spot

Additional Disease Management Concerns

About Me

Family farm in Alexandria, MN

- High tunnel crops
- Vegetables and small fruits

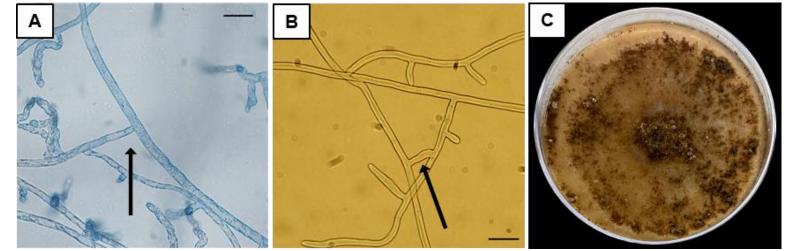
Education:

University of Minnesota (B.S.)

Cornell University (Ph.D.)

• Plant Pathology

Research background


Management and biology of *Rhizoctonia solani* in table beet

- Optimizing use of conventional and biological pesticides
- In-furrow vs. post-emergent

Root and foliar microbiomes

• Linked to plant health?

Rhizoctonia solani under the microscope and in the lab (E. Branch)

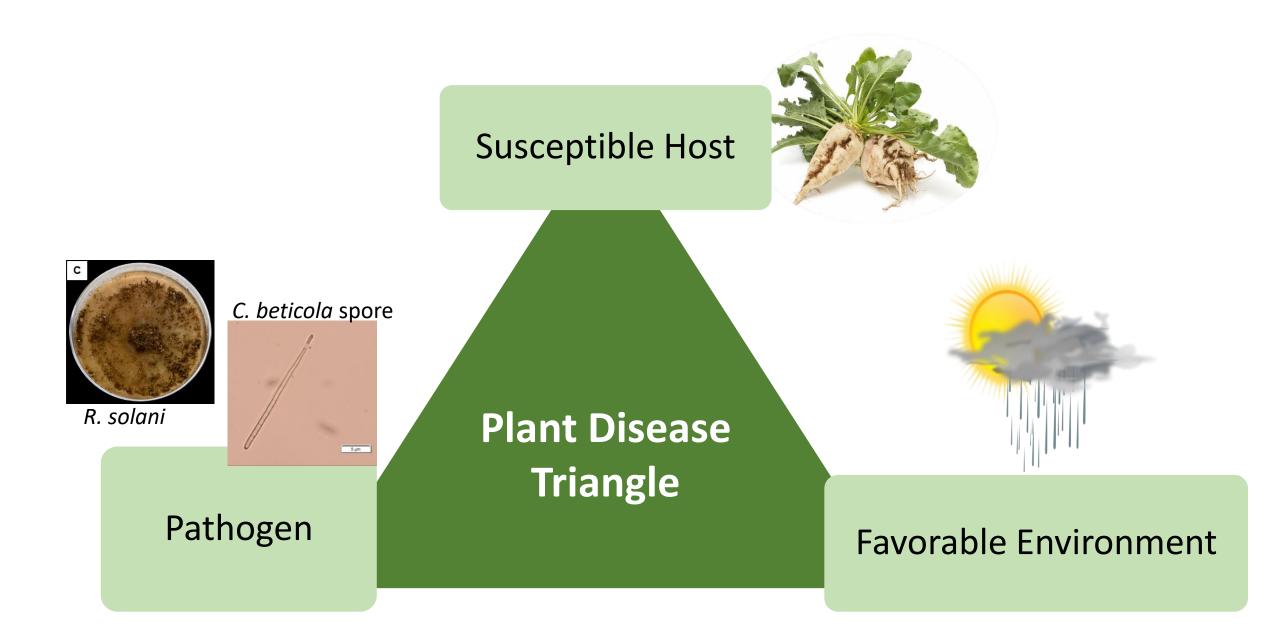
Outline	
About Me	
Plant Pathology Foundations for Sugarbeet	
2023 Field Trials – Cercospora Leaf Spot	
Additional Disease Management Concerns	

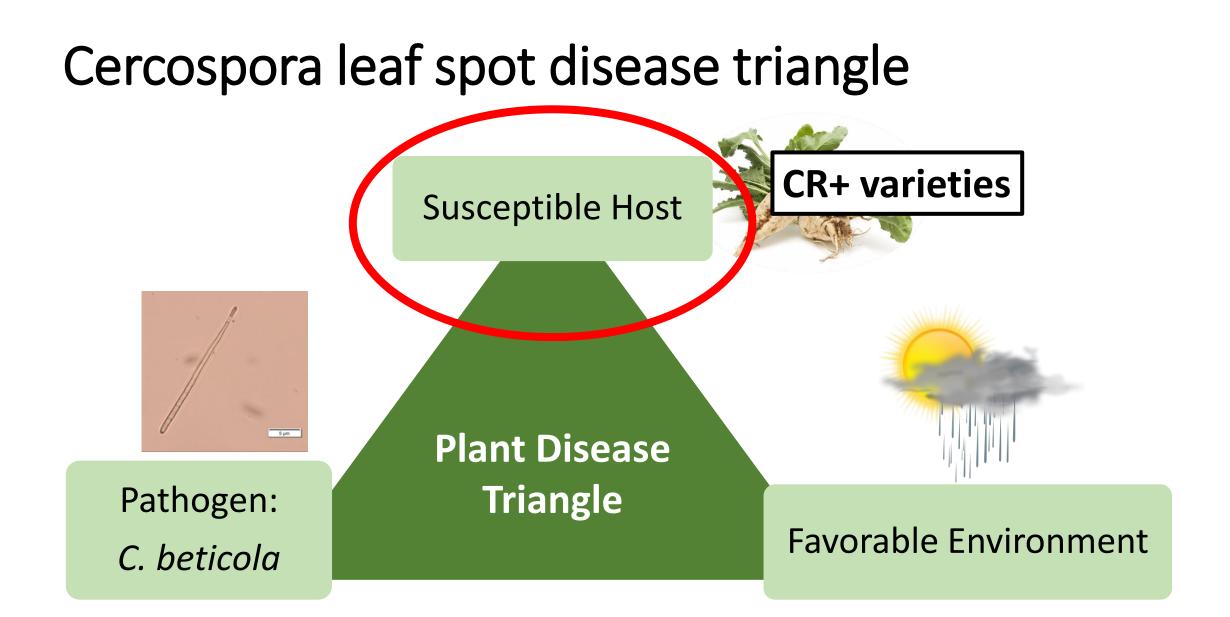
Principles of plant pathology can guide management

"Know your enemy..."

Backbone of applied plant pathology

Plant disease triangle


• What are the factors involved in and promoting infection?


Pathogen life cycles

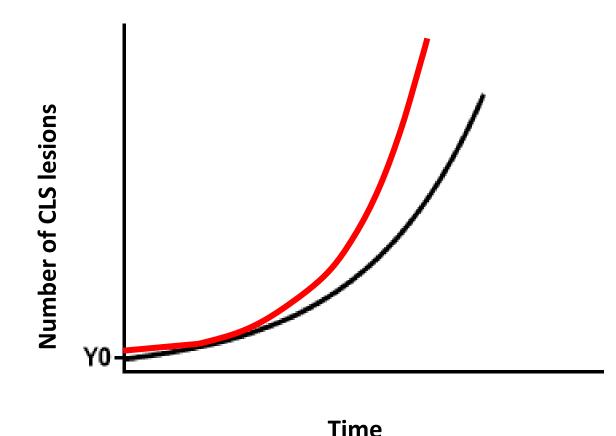
- How can we interrupt and limit growth and reproduction of the pathogen?
- Optimize timing of control measures (fungicides)

Historical example: stem rust of wheat and common barberry eradication (Pederson 2013; DOI: 10.1094/APSFeature-2013-08)

Life cycle of *Cercospora beticola*

Multiple opportunities for Spore germination Lesion and infection development CLS control: Crop rotation Residue Management In-season fungicides Spore production Polycyclic disease Lesion enlargement • Inoculum increases over and coalescence the season Leaf death and pseudostromata formation

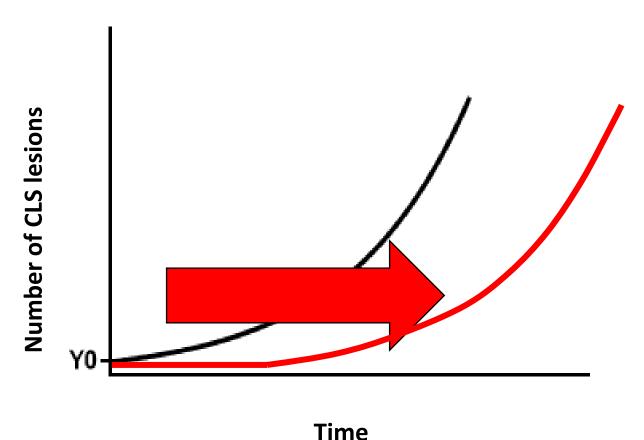
Adapted from S. Sharma


CLS disease progression is exponential

Low numbers of CLS lesions can quickly develop into CLS epidemics if conditions favor disease

- 80°F daytime, 60°F night temperatures
- Row closing (increases humidity)

Insights from latent infection data


Disease onset may be already too late!

How to delay CLS disease progression?

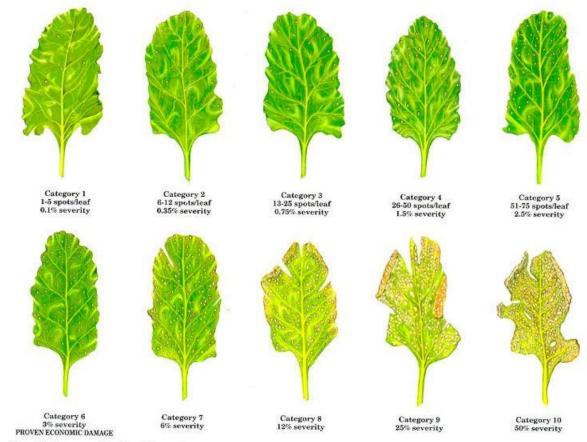
Decrease host susceptibility or limit pathogen infection and growth

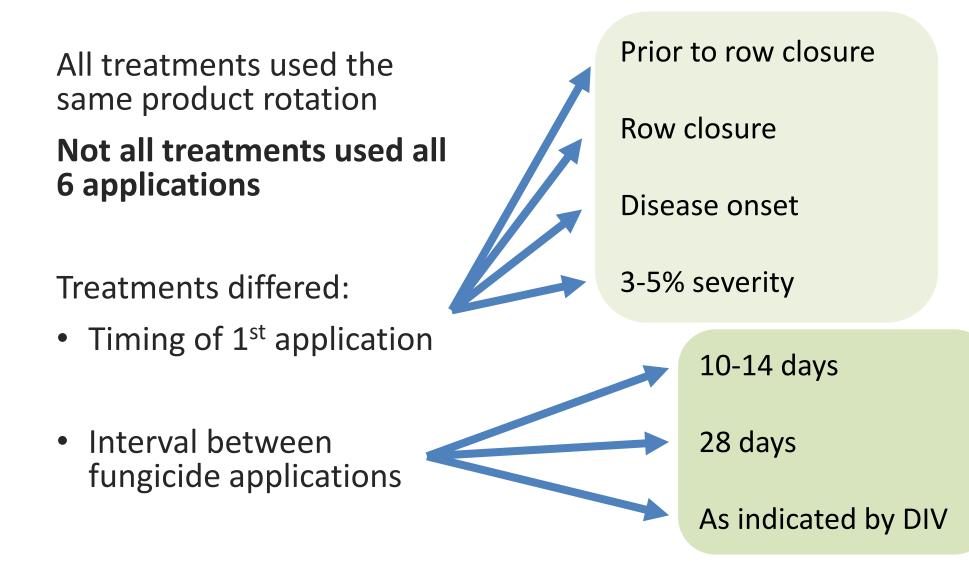
- CR+ genetics
- Apply effective fungicides at optimal timing, rotate FRAC groups
- Combining tools is necessary to prolong useful life of CLS control options

Fungicide timing for CLS control

2023 CLS severity trial

- Three locations: Moorhead, Prosper, Foxhome
 Jones and Windels 1991
- Harvested September 18th
- Dr. Mohamed Khan and Sunil Bhandari
- Prosper data shown (highest CLS pressure)




Figure B: Cercospora Leaf Spot Damage Categories

Fungicide timing for CLS control

All treatments used the same product rotation:

- 1. Super Tin + Badge SC
- 2. Minerva + Manzate Max
- 3. Super Tin + Badge SC
- 4. Inspire XT + Manzate Max
- 5. Super Tin + Badge SC
- 6. Proline + Manzate Max (+ Preference)

Fungicide timing for CLS control

Effect on Application Timing and Interval: CR+

1 st application timing	Intervals	Total applications	Final CLS Rating	Yield (Ton/A)	Sugar (%)	SLM (%)	Sugar (Ibs./A)
Nontreated control	-	0	4.5 def	34.38	16.45	0.955	10,810
Prior to row closure	10-14 day	6	2.0 a	35.8	15.75	1.02	10,107
Row closure	10-14 days	5	2.0 a	38.85	15.56	0.96	11,386
Row closure	28 days	3	2.5 ab	37	15.87	0.96	11,137
Row closure	DIV	4	2.5 ab	41.88	16.10	0.95	12,697
Disease onset	10-14 days	3	2.3 ab	40.43	16.02	0.93	12,262
Disease onset	28 days	2	3.3 abcd	41.73	16.29	0.91	12,869
Disease onset	DIV	3	2.8 abc	41.48	16.25	0.89	12,735
3-5% severity	10-14 days	1	5.3 f	32.03	15.97	0.94	10,014
3-5% severity	DIV	1	4.5 def	33.03	15.97	1.01	10,188

Effect on Application Timing and Interval: CR+

1 st application timing	Intervals	Total applications	Final CLS Rating	Yield (Ton/A)	Sugar (%)	SLM (%)	Sugar (Ibs./A)
Nontreated control	-	0	4.5 def	34.38	16.45	0.955	10,810
Prior to row closure	10-14 day	6	2.0 a	35.8	15.75	1.02	10,107
Row closure	10-14 days	5	2.0 a	38.85	15.56	0.96	11,386
Row closure	28 days	3	2.5 ab	37	15.87	0.96	11,137
Row closure	DIV	4	2.5 ab	41.88	16.10	0.95	12,697
Disease onset	10-14 days	3	2.3 ab	40.43	16.02	0.93	12,262
Disease onset	28 days	2	3.3 abcd	41.73	16.29	0.91	12,869
Disease onset	DIV	3	2.8 abc	41.48	16.25	0.89	12,735
3-5% severity	10-14 days	1	5.3 f	32.03	15.97	0.94	10,014
3-5% severity	DIV	1	4.5 def	33.03	15.97	1.01	10,188

Effect on Application Timing and Interval: non-CR+

1 st application timing	Intervals	Total applications	Final CLS Rating	Yield (Ton/A)	Sugar (%)	SLM (%)	Sugar (Ibs./A)
Nontreated control	-	0	10.0 f	32.88	15.58	0.98	9,626
Prior to row closure	10-14 days	6	3.0 a	41.55	16.68	0.94	13,080
Row closure	10-14 days	5	4.0 abc	42.85	17.01	0.82	13,887
Row closure	28 days	3	8.5 de	39.58	16.42	0.93	12,265
Row closure	DIV	4	5.3 c	40.38	16.66	0.92	12,617
Disease onset	10-14 days	4	5.0 c	38.08	17.3	0.98	12,494
Disease onset	28 days	2	7.3 d	40.05	16.56	0.93	12,540
Disease onset	DIV	4	4.8 bc	40.93	16.69	0.98	12,881
3-5% severity	10-14 days	3	9.5 ef	36.03	16.53	0.85	11,341
3-5% severity	DIV	3	9.0 ef	38.10	16.16	0.98	11,616

Effect on Application Timing and Interval: non-CR+

1 st application timing	Intervals	Total applications	Final CLS Rating	Yield (Ton/A)	Sugar (%)	SLM (%)	Sugar (Ibs./A)
Nontreated control	-	0	10.0 f	32.88	15.58	0.98	9,626
Prior to row closure	10-14 days	6	3.0 a	41.55	16.68	0.94	13,080
Row closure	10-14 days	5	4.0 abc	42.85	17.01	0.82	13,887
Row closure	28 days	3	8.5 de	39.58	16.42	0.93	12,265
Row closure	DIV	4	5.3 c	40.38	16.66	0.92	12,617
Disease onset	10-14 days	4	5.0 c	38.08	17.3	0.98	12,494
Disease onset	28 days	2	7.3 d	40.05	16.56	0.93	12,540
Disease onset	DIV	4	4.8 bc	40.93	16.69	0.98	12,881
3-5% severity	10-14 days	3	9.5 ef	36.03	16.53	0.85	11,341
3-5% severity	DIV	3	9.0 ef	38.10	16.16	0.98	11,616

Fungicide Timing Summary for CLS:

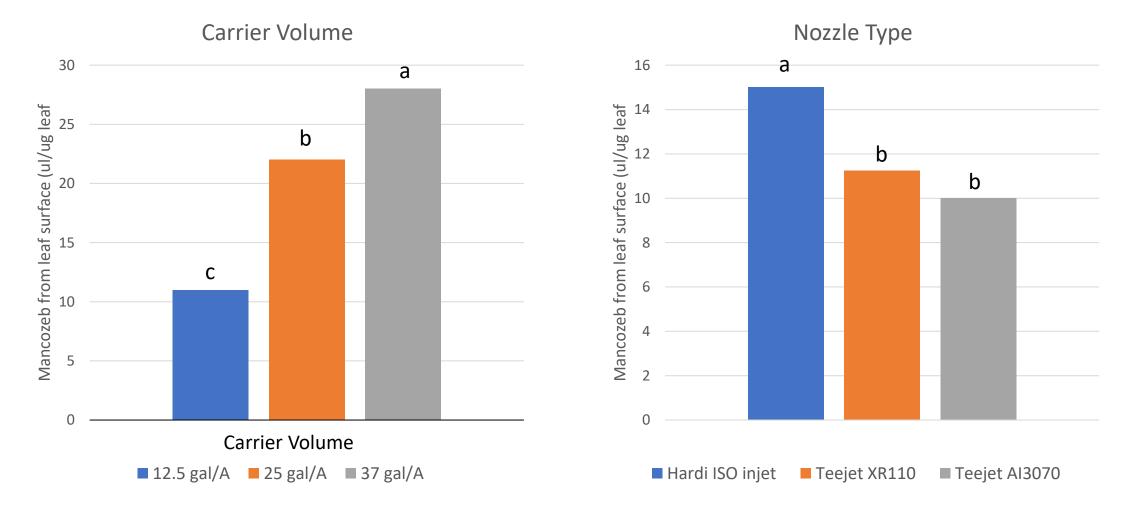
- 1. The most effective programs include a fungicide application made at or prior to row closure
- 2. 3-4 fungicide applications may lead to increased recoverable sugar/Acre for CR+ varieties and non-CR+ varieties
- 3. Extended interval program is generally acceptable for CR+
 - Still requires early application
 - Need to monitor environment and DIV
 - Extended interval = 2-3 weeks

Outline **About Me Plant Pathology Foundations for Sugarbeet 2023** Field Trials – Cercospora Leaf Spot Treatments **Additional Disease Management Concerns**

Optimizing CLS control through spray quality

Successful disease management also depends on spray coverage

Best practices include:


- Medium droplet sizes (300-350 microns)
- High pressure (80 psi)

Effect of nozzle type and carrier volume

- 2023 sugarbeet field trial from Ontario, Canada
- Quantified amount of Mancozeb recovered leaf surfaces
- Importance of considering droplet size, carrier volume, and coverage
 - Refer to nozzle manufacture guidelines

Effect of nozzle type and carrier volume

Adapted from Thornton et al. 2023 *Crop Protection* 167:106198

CLS fungicides are best applied alone

Changing weed pressure and earlier foliar fungicide applications has led to questions about tank mixes of herbicides and fungicides

Applying herbicides and foliar fungicides **separately** is still the best recommendation

Concerns:

- Crop injury
- Efficacy of weed or disease control

Emerging (or Re-emerging) Diseases

Rhizomania

- Beet Necrotic Yellow Vein Virus (BNYVV) / *Polymyxa betae* (soilborne protist)
- New BNYVV strains ?

Alternaria leaf spot

• Alternaria spp.

Effective Scouting and Diagnosis!

Rhizomania

Symptoms include yellowing of leaves, and stunted, "wineglass" shaped roots with rootlets.

https://www.uidaho.edu/extension/ipm/ag-pests/nematodes/rhizomania

Alternaria leaf spot

Reports of increased Alternaria isolations in 2023

• Frequently isolated with *C. beticola*

Alternaria may be a primary pathogen, secondary pathogen, or both.

https://apsjournals.apsnet.org/doi/10.1094/PHP-03-22-0025-DG

Acknowledgements

Sugarbeet Research & Education Board of MN and ND

Seed, chemical, and other industry support

Sugarbeet cooperatives

Peter Hakk

NDSU/UMN colleagues

EXTENSION

Contact me: Email: eric.branch@ndsu.edu

> Phone: 701-365-1016 (mobile)

> > UNIVERSITY OF MINNESOTA EXTENSION